Perturbative Calculations for Precision High-Energy Phenomenology

- Computational Frontier -

Tobias Neumann (BNL)

with Andreas von Manteuffel (MSU) and Fernando Febres Cordero (FSU)

We measure 1.0 ± 0.01

We measure 1.0 ± 0.01 But we predict (SM) 1.1 ± 0.1

Perturbative

Non-perturbative

- Construction of amplitudes
- Calculation of loop integrals
- Phase space integration

The worker nodes detail:

- HPE ProLiant XL270d Gen10
- Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
- NUMA node0 CPU(s): 0-19
- NUMA nodel CPU(s): 20-39
- Thread(s) per core: 1
- Core(s) per socket: 20
- Socket(s): 2
- NUMA node(s): 2
- 8x Nvidia V100-SXM2-32GB with NV-Link
- 768 GB Memory
- InfiniBand EDR connectivity

Perturbative Calculations for Precision High-Energy Phenomenology

a whitepaper with Andreas von Manteuffel (MSU) and Fernando Febres Cordero (FSU)

- Survey advances in perturbative methods for precision phenomenology
- Characterize methods and complexity of existing calculations
- Assess computational demands which deliver the required precision for LHC, EIC, HL-LHC

